

Voltage supply：
Connections：

Setting range：

Protection class：

Brightness sensor：
Light probe：

Permitted ambient temperature：

Brightness sensor：
Light probe：

Housing dimensions：

Brightness sensor：
Light probe with mounting bracket：

Database structure：

区 Physical sensors
区 Brightness sensor

区 Brightness
Gebr．Berker

The brightness sensor 3gang controls switch and／or dimming actuators depending on the brightness of the surroundings．The surrounding brightness is registered using a connected light probe that is part of the delivery scope（max．cable length 100 m ）．Depending on the application，the device has several transmission channels whose switching limited values can be parameterised by the ETS．
Furthermore，a blocking object（1 byte）can be used to temporarily deactivate any combination of transmission channels．The brightness sensor 3gang is suitable for all applications where comfortable lighting controls are required．Currently 2 different applications are available （application programs）：

Switching， 3 limited values：With this application，the device assumes the function of a 3－channel limited value switch with a setting range from 1 to 10.000 Lux．Every limited value value can be set separately．Each channel＇s send response can be parameterised for when it exceeds／undershoots a limited value．
Switching，Value transmitter， 4 brightness areas：In this application， the brightness sensor 3gang assumes the function of a brightness－ controlled light scene component with a setting range of 1 to 100 Lux or 100 to 20.000 Lux．
The scene consists of 3 switching and 1 value object．Various brightness ranges are assigned to one light scene．If the measured brightness value is in such a range，then corresponding switch and value telegrams are sent to the bus．

Via bus voltage
－ 1 bus connection（via bus connector terminal）
－ 1 light probe（via 2 screw－type termin．，cable length max． 100 m ）
1 ．．． 20000 Lux

IP 21 according to DIN EN 60529
IP 54 according to DIN EN 60529
$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} . .+70^{\circ} \mathrm{C}$
$86 \times 35.8 \times 60 \mathrm{~mm}(\mathrm{H} / \mathrm{W} / \mathrm{D})$ ，RMD width 2 units
$86 \times 27 \times 38 \mathrm{~mm}$
Max． $118 \times 27 \times 62 \mathrm{~mm}$

Application Summary：

Switching， 3 limited values
Switching，Value transmitter， 4 brightness areas sensor 3gang RMD

Description of application

Applikation: Switching, 3 limited values

In this application, the brightness sensor 3gang has three switching channels that can be parameterised individually. The following can be set individually for each channel:

- Switch limited value (setting range between 1 and 10.000 Lux)
- Switch response when "brighter than limited value"
- Switch response when "darker than limited value"

The following can be parameterised together for all three channels:

- Time for cyclic transmission responses
- Delay time
- Hysteresis

Any combination of channels can be temporarily deactivated or activated by a 1 Byte object (Object 3).

Communications objects

No	Object name	Function	Type	Response
0	Limiting value 1	Switching	1 Bit	Send
1	Limiting value 2	Switching	1 Bit	Send
2	Limiting value 3	Switching	1 Bit	Send
3	Brightness sensor	Locking	1 Byte	Receive

Max. number of group addresses: 5
Max. number of assignments: 5

- Objects 0, 1, 2: Limiting value 1, 2, 3

The parameterised value is sent (see parameters) when it is darker or brighter than the set limited value.

- Object 3: Locking

The send response of every individual channel can be blocked or enabled via this 1 Byte object.

Value of blocking object (Type 1 Byte)		Send response for channels$\begin{aligned} & A=\text { active } \\ & B=\text { blocked (Send to the corresponding channel object is suppressed) } \end{aligned}$		
Decimal	Binary	Channel 1 (Object 0)	Channel 2 (Object 1)	Channel 3 (Object 2)
0	00000000	A	A	A
1	00000001	B	A	A
2	00000010	A	B	A
3	00000011	B	B	A
4	00000100	A	A	B
5	00000101	B	A	B
6	00000110	A	B	B
7	00000111	B	B	B

Caution!

When resetting a blocking bit, the corresponding channel object immediately sends its current value. In the case of a bus voltage failure, the entire blocking object is reset to 0 .
Note: Changing a bit blocking telegram into a byte blocking telegram: If the blocking command was generated with the help of a 1 bit sensor, then the application for converting 1 to 8 bit telegrams belonging to the logic operation controller can be used (BCU-RMD with controller application).

Description of parameters

Limited value 1, 2, 3		Limited value to to 2.40 MOhm (1 Lux)		Setting for switching limited value at which a telegram is sent via the corresponding channel (Obj. 0, 1 or 2). Because of the tolerance of the light probe a resistance value must be entered here. The corresponding value can be taken from the Auxiliary Table (see 0).
Transmission if limited value is fallen under	No function OFF ON OFF ON, cyclic transmission OFF, cyclic transmission	Setting concerning which telegram will be sent via the channel object if it is darker than the set limited value.		
Transmission if limited value is exceeded	No function OFF ON OFF ON, cyclic transmission OFF, cyclic transmission	Setting concerning which telegram will be sent via the channel object if it is brighter than the set limited value.		

Auxiliary Table for the Parameterisation of the Brightness Values

Because of the tolerance of the light probe, the switching limited value of the brightness value is given as the resistance value.

Brightness	Resistance of		Average value	Resolution
1 Lux	2.000 MOhm .. 3.000 MOhm 1.400 MOhm .. 2.500 MOhm 1.000 MOhm . 2.000 MOhm 700 KOhm \ldots 1.500 MOhm 450 KOhm \ldots 1.000 MOhm 250 KOhm \ldots 550 KOhm 120 KOhm \ldots 300 KOhm 95 KOhm \ldots 200 KOhm 60 KOhm \ldots 120 KOhm 35 KOhm \ldots 75 KOhm 20 KOhm \ldots 40 KOhm 12 KOhm \ldots 30 KOhm 9 KOhm \ldots 20 KOhm 5.5 KOhm \ldots 11 KOhm 3.5 KOhm \ldots 7.5 KOhm 2 KOhm \ldots 4 KOhm 1.2 KOhm \ldots 3 KOhm 0.8 KOhm \ldots 2.4 KOhm		2.400 MOhm 2.000 MOhm 1.500 MOhm 1.000 MOhm 700 MOhm 350 KOhm 200 KOhm 130 KOhm 90 KOhm 50 KOhm 28 KOhm 20 KOhm 13 KOhm 8.5 KOhm 5 KOhm 2.8 KOhm 2 KOhm 1.2 KOhm	Resolution 20 KOhm
1.5 Lux				
2 Lux				
3 Lux				
5 Lux				
10 Lux				
20 Lux				
30 Lux				
50 Lux				
100 Lux			Resolution 400 Ohm	
200 Lux				
300 Lux				
500 Lux				
1000 Lux				
2000 Lux				
5000 Lux				
10000 Lux				
20000 Lux				

Transmission delay and hysteresis

Send delay	Approx. 10 sec. Approx. 20 sec . Approx. 30 sec. Approx. 45 sec . Approx. 60 sec . Approx. 90 sec . Approx. 2 min. Approx. 3 min.	To avoid switching errors because of light reflexes or brief de-activation, an ON and OFF delay should be set in the parameters. This parameter setting applies for all 3 switching limited values. A telegram will only be sent if the measured brightness value for the parameterised time is higher or lower than the preset limited value value (incl. hysteresis).

Positive Hysteresis

```
Approx. 6%
Approx. 12.5 %
Approx. 25 %
```

Setting a hysteresis value eliminates repeated switching if the measured brightness value is in the range of the set limited value. One should note that this only involves positive hysteresis values.

Cycle time		
Cycle time	Approx. 3 min. Approx. 5 min. Approx. 10 min.	Setting for the cycle time with which a telegram is repeatedly sent to the bus. This Approx. 15 min. Approx. 20 min. Approx. 30 min.
Approx. 45 min.	the send response is set to "Cyclical send".	

Application: Brightness sensor with 4 light scenes

In this application, the brightness sensor assumes the function of a brightness-controlled lighting arrangement component with a setting range between 1 and 100 Lux and 100 and 20,000 Lux.

Four brightness ranges can be defined through 3 different switch limited values. Every brightness range therefore has a lighting arrangement consisting of three switching and one value object assigned to it. If the measured brightness value is in one of these ranges for a certain delay time then the parameterised switching and value telegrams are sent to the bus. In addition, each light scene object can be positively driven via a so-called blocking object.

Communications objects

Nr.	Object name	Function	Type	Response
0	Brightness sensor	Value transmitter	1 Byte	Send
1	Output 1	Switching	1 Bit	Send
2	Output 2	Switching	1 Bit	Send
3	Output 3	Switching	1 Bit	Send
4	Brightness sensor	Locking	1 Byte	Receive

Max. number of group addresses: 5
Max. number of assignments: 5

- Object: Brightness sensor

A value telegram (8 Bit) is sent depending on which brightness range the current measured brightness value is in. In accordance with the preset transmission response, the telegram is sent cyclically or only when changing to another brightness range.

- Objects: Outputs 1, 2, 3

Switch telegrams (1 Bit) are send, depending on which brightness range the current measured brightness value is in. In accordance with the preset transmission response, the telegram is sent cyclically or only when changing to another brightness range.

- Object : Brightness sensor, locking

If a suitable value (see table) is transferred to this 8 bit receive object then the corresponding switch or value object assumes the parameterised state (Response if blocked).

After receiving a blocking bit, the following transmission response can be parameterised for the corresponding switch or value object:

Send no telegram	No further telegram will be sent out to the corresponding switch or value object after receiving the corresponding blocking bit.
Send OFF telegram	An OFF telegram will be sent out once to the corresponding switch or value object after the blocking bit is received.
Send ON telegram	An ON telegram will be sent out once to the corresponding switch or value object after the blocking bit is received

Please note:

If a blocking bit is set, then all light scene objects (Objects $0-3$) send their current value, i.e. the light scene objects that do not have a blocked state send the value based on the current lighting range and the assigned light scene. The light scene objects that have a blocked state respond as though "Respond if blocked" had been set.
Changing a bit blocking telegram into a byte blocking telegram: If the blocking command was generated with the help of a 1 bit sensor, then application for converting 1 to 8 bit telegrams belonging to the logic operation controller can be used (BCU RMD with controller application).

The following relationship exists between the value of the blocking object and light scene objects 0 to 3 :

Value of the blocking object (Object 4 / Type 1 Byte)		Transmission responses of the channels $\mathrm{A}=\text { active }$ $B=$ blocked (i.e. the send object assumes the status that has been set on the parameter side for "Response when blocked" after receiving the corresponding blocking bit.)			
Decimal	Binary	Object 3	Object 2	Object 1	Object 0
0	00000000	A	A	A	A
1	00000001	A	A	A	B
2	00000010	A	A	B	A
3	00000011	A	A	B	B
4	00000100	A	B	A	A
5	00000101	A	B	A	B
6	00000110	A	B	B	A
7	00000111	A	B	B	B
8	00001000	B	A	A	A
9	00001001	B	A	A	B
10	00001010	B	A	B	A
11	00001011	B	A	B	B
12	00001100	B	B	A	A
13	00001101	B	B	A	B
14	00001110	B	B	B	A
15	00001111	B	B	B	B
16 to 255	Bits 4 to 7 have no function	A	A	A	A

Function of blocking object:

Response in case of bus voltage failure

As it is not possible to predict how long such a failure will last, light scene objects 0 to 3 lose their current value. As a result, only the value of the blocking object is retained.

Response after restoration of bus voltage

All light scene objects that are not in a blocked state are re-initialised and thus send out telegrams concerning the measured brightness values after the bus voltage is restored. The telegrams are however only sent to the bus after the preset delay time (see parameter "Transmission delay").
Such light scene objects that are in a blocked state assume the state that is set on the parameter side under "Lock function" after 17 seconds. If telegrams are sent during the blocked state then the setting on the "Behaviour of transmission" side apply.

Desciption of parameters:

Limited values		
Limited value, base	10 KOhm (1-100 Lux area) 200 Ohm (100 - 20000 Lux area)	The brightness value for the individual switch limited values is entered as the resistance value because of the tolerance of the light probe. The common basic value with the corresponding measuring range is set for all limited values with this parameter. The resistance value for a limited value is calculated as follows: Resistance value = Base \times Factor The corresponding resistance value for the appropriate Lux value can be found in the Auxiliary Table (see 0).
Help to calculate factor (only for information !)	15 Lux: Factor approx. 200: 100 Lux: Factor approx. 5	This parameter serves only as a setting aid for rough orientation with the parameterisation of the factors for limited values 1 to 3 , i.e. the parameter has no affect on the application program.
Limited value 1, factor (upper brightness value)	$\begin{array}{\|l\|} \hline 5 \\ \vdots \\ 250 \end{array}$	Enter the factor for the resistance value for limited value 1: The factor for limited value 1 must be smaller than the factor for limited value 2.
Limited value 2, factor (middle brightness value)	$\begin{array}{\|l\|} \hline 5 \\ \vdots \\ 250 \\ \text { Not used } \end{array}$	Enter the factor for the resistance value for limited value 2: The factor for limited value 2 must be smaller than the factor for limited value 3.
Limited value 3, factor (lower brightness value)	$\begin{array}{\|l} \hline 5 \\ \vdots \\ 250 \\ \text { Not used } \\ \hline \end{array}$	Enter the factor for the resistance value for limited value 3.
Positive hysteresis	Approx. 6 \% Approx. 12.5 \% Approx. 25 \%	By setting the hysteresis, it is possible to prevent repeating switching if the measured brightness value is in the range of the set limited value. Please note that this only involves positive hysteresis values.
Transmission delay	Approx. 20 sec. Approx. 30 sec. Approx. 45 sec . Approx. 60 sec . Approx. 90 sec . Approx. 2 min. Approx. 3 min. Approx. 4 min.	To avoid switching errors because of light reflexes or brief de-activation, an ON and OFF delay should be set in the parameters. This parameter setting applies for all 3 switching limited values. A telegram will only be sent if the measured brightness value for the parameterised time is higher or lower than the preset limited value (incl. hysteresis).

Important information with regard to defining parameters for switch limited values:

- Entering the factors for limited values 1 to 3 must occur in ascending order, i.e. + Factor for limited value $\mathbf{1}$ < Factor for limited value $\mathbf{2}$ < Factor for limited value 3.
- For the factors for limited values 2 and 3, the setting "not used" can be selected. The following must be observed if this is the case:

Example "Do not use one limited value"

- Set factor for limited value 3 to "not used".
- Result: Light scene 4 is not executed.

Example "Do not use two limited values"

- Set factor for limited values 2 and 3 to "not used".
- Result: Light scenes 3 and 4 are not executed.
© Gebr. Berker 2001
(Subject to prior change)
Version: 13.07.2001
75213006.doc

Limited value 1is exeeded, Between limited values 1 and 2, Between limited values 2 and 3, Limited value 3 is fallen under		
Use switch object of output 1?	YES NO	Setting concerning whether a telegram will be sent to switch object 1 when limited value value is exceeded.
Telegram when exceeding limited value	ON OFF	Setting concerning which telegram is to be sent.
Use switch object of output 2?	YES NO	ON OFF
Telegram when exceeding limited value	YES NO	See switch object 1
Use switch object of output 3?	See switch object 1	
Telegram when exceeding limited value	ON OFF	See switch object 1
Use value object of brightness sensor?	YES NO	See switch object 1
Telegram value	$0 \ldots 255$	Setting concerning what value (0 ... 255) is to be sent.

Locking function	Use switch object of output 1? NO	
Telegram at locking	OF OFF be sent to switch object 1 directly after setting the corresponding blocking bit.	
Use switch object of output 2?	YES NO	Setting concerning what telegram will be sent one more time.
Telegram at locking	ON OFF	See switch object 1
Use switch object of output 2?	YES NO	See switch object 1
Telegram at locking	ON OFF	See switch object 1
Use value object of brightness sensor ?	YES NO	See switch object 1
Telegram at locking	$0 \ldots 255$	See switch object 1 be sent.

| Behaviour of transmission | $\begin{array}{l}\text { Cyclic } \\ \text { If limited value is exceeded or } \\ \text { fallen under }\end{array}$ | |
| :--- | :--- | :--- | \(\left.\begin{array}{l}The preset send response applies mutually for

all objects(0 to 3).\end{array}\right\}\)| Setting concerning cycle time with which the |
| :--- |
| telegram is repeatedly sent to the bus. |

Application examples

Example 1: 3 stage switching of a lighting system dependent on outside light

A lighting system in a purpose build structure is to be switched in 3 stages depending on outside brightness.

Requirements:

\Rightarrow The entire outside lighting should be switched off if the outside lighting has an intensity of more than 50 Lux. If the outside light value falls under the value of 50 Lux, the outside lighting will be switched on again.
\Rightarrow The lighting in halls, staircases and lobby areas is to be switched off if there is an inside lighting intensity of more than 200 Lux. If the inside light falls under this value, the lights will be switched on again automatically.
$\Rightarrow \quad$ All the remaining lights in the rooms with daylight are to be switched off when the lighting intensity inside exceeds 500 Lux.

Implementation:

A brightness sensor with the application "Switching, 3 limited values" is used to solve this task. The light trap is mounted in an eastern direction on an outside wall. ${ }^{1}$

The "Daylight quotients" are used to calculate what level of outside brightness is required to achieve the required lighting intensity at a reference point in the inside area. The daylight quotient is indicated as a percentage and shows the relationship between the inside lighting intensity E inside and the outside lighting intensity E outside.

The daylight quotient T is therefore calculated as follows.
$\mathbf{T}=\mathbf{E}_{\text {inside }} / \mathbf{E}_{\text {outside }}$

The corresponding limited value value $\mathrm{E}_{\text {limited value }}$ for the parameter setting can be calculated using the required lighting intensity at the reference points in the inside area and a daylight quotient determined by a measurement

Lighting system	Daylight quotient	$\mathrm{E}_{\text {Req'd }}$	$\mathrm{E}_{\text {limited value }}$
Outside lighting	100%	50 Ix	50 Ix
Inside lighting 1	10%	200 Ix	2000 Ix
Inside lighting 2	10%	500 Ix	5000 Ix

[^0]
Configuration steps:

\Rightarrow Add a brightness sensor into the works "Brightness sensor with 3 limited values".
\Rightarrow Set the following parameters for the application "Switching, 3 limited values":

Parameter bearbeiten	Cycle time	X]	
Limited value 1	Limied value 2	Limied volue 3	Transmistion deloy and tusteresis

Arrange suitable bus communication for the bus subscribers involved (Assign communications objects for the EIBdevice group addresses).

Expanding the tasks by the function "Time-controlled enabling of the brightness controls" Requirement:

The brightness sensor channels for the outside-dependent switching of the lighting system are to be activated or deactivated at a certain time.
The following timing controls are required:

Time	Functionality of the brightness sensors' switching channels
$22: 00$	All brightness-dependent channels are blocked
$05: 00$	Enable brightness-dependent switching of the outside lighting (Channel 1 activated, Channel 2 \& Channel 3 blocked)
$06: 00$	Enable brightness-dependent switching of the lighting in halls, staircases and lobby areas (Channel 1 \& Channel 2 activated, Channel 3 blocked)
$07: 00$	Enable brightness-dependent switching of all channels (Channel 1, Channel 2, Channel 3 activated)
$17: 00$	Block brightness-dependent switching in the working areas with daylight (Channel 1 \& Channel 2 activated, Channel 3 blocked)
$20: 00$	Block brightness dependent switching of the lighting in the halls, staircases and lobby areas (Channel 1 activated, Channel 2 \& Channel 3 blocked)
Vacation	All brightness-dependent channels are blocked

Implementation:

To achieve the task, a 3 of 4 channel weekly contact making clock, which writes one byte telegrams with various values to the brightness sensor's blocking object, depending on the switching states of its channels, is used. Every brightness dependent switching channel is enabled or blocked in this way.

The 3 or 4-channel make contact clock must fulfil the following function:

Time	Status of clock channels		Value to be sent	Bit combination at blocking object	Functionality of the brightness sensor's switching channels
	C3	C2	C1		
$22: 00$	0	0	0	7	111
$05: 00$	0	0	1	6	110
$06: 00$	0	1	1	4	100
All brightness-dependent channels are blocked					
$17: 00$	0	1	1	4	Channel 1 activated, Channel 2 \& Channel 3 blocked
$20: 00$	0	0	1	6	Channel 1 \& Channel 2 activated, Channel 3 blocked
	1	1	1	0	000
Vacation	0	0	0	7	110

[^0]: ${ }^{1}$ A brightness sensor 3gang must be used for each direction in the sky if outside light-dependent lighting controls, depending on a certain sky direction, are to be used.

